470 research outputs found

    Dielectrophoretic Trapping of Carbon Nanotubes for Temperature Sensing

    Get PDF
    Conventional sensors are rapidly approaching efficiency limitations at their current size. In designing more efficient sensors, low dimensional materials such as carbon nanotubes (CNTs), quantum dots, and DNA origami can be used to enable higher degrees of sensitivity. Because of the high atomic surface to core ratio, these materials can be used to detect slight changes in chemical composition, strain, and temperature. CNTs offer unique advantages in different types of sensors due to their electromechanical properties. In temperature sensing, the high responsiveness to temperature and durability can be used to produce an accurate, reliable sensor in even extreme temperatures. This study aimed to utilize CNTs to reliably produce a temperature sensor in an easily reproducible method. CNTs were trapped and immobilized using dielectrophoresis to bridge two gold nanoelectrodes on a sapphire substrate. The fabricated device showed high sensitivity to temperature variation, with a measured resistive sensitivity of 2.96 E-3/K, a higher sensitivity than similar thin film sensors. This study will help further development of CNT-based temperature sensors

    Comparing Laser Assisted Pulling and Chemical Vapor Deposition Methods in the Fabrication of Carbon Ultramicro- and Nanoelectrodes

    Get PDF
    Ultramicroelectrodes (UMEs) (limiting dimensions \u3c~25 ÎŒm) and nanoelectrodes (\u3c~100 nm) exhibit enhanced electrochemical properties compared to macroscopic electrodes. Their small sizes and enhanced properties make them well-suited for various interesting and important applications such as measuring redox-active species in nonaqueous solvents, studying intermediates of fast electrochemical reactions, and investigating electrochemical and electrocatalytic properties of single nanoparticles. While UMEs are commercially available, nanoelectrode fabrication is still largely confined to research labs. Various methods for constructing nanoelectrodes have been reported and continue to be developed, but most require considerable expertise, and comparisons between different fabrication processes are lacking. In this work, a comparison of laser-assisted pulling and chemical vapor deposition (CVD) methods of electrode fabrication is made with the aim of optimizing production of carbon nanoelectrodes for single nanoparticle electrochemical measurements. By examining effects of pulling parameters, post-pulling treatments, and CVD processing, electrodes as small as ~50 nm were successfully produced

    Comparing Laser Assisted Pulling and Chemical Vapor Deposition Methods in the Fabrication of Carbon Ultramicro- and Nanoelectrodes

    Get PDF
    Ultramicroelectrodes (UMEs) (limiting dimensions \u3c~25 ÎŒm) and nanoelectrodes (\u3c~100 nm) exhibit enhanced electrochemical properties compared to macroscopic electrodes. Their small sizes and enhanced properties make them well-suited for various interesting and important applications such as measuring redox-active species in nonaqueous solvents, studying intermediates of fast electrochemical reactions, and investigating electrochemical and electrocatalytic properties of single nanoparticles. While UMEs are commercially available, nanoelectrode fabrication is still largely confined to research labs. Various methods for constructing nanoelectrodes have been reported and continue to be developed, but most require considerable expertise, and comparisons between different fabrication processes are lacking. In this work, a comparison of laser-assisted pulling and chemical vapor deposition (CVD) methods of electrode fabrication is made with the aim of optimizing production of carbon nanoelectrodes for single nanoparticle electrochemical measurements. By examining effects of pulling parameters, post-pulling treatments, and CVD processing, electrodes as small as ~50 nm were successfully produced

    Development of a Sensitive Electrochemical Enzymatic Reaction-Based Cholesterol Biosensor Using Nano-Sized Carbon Interdigitated Electrodes Decorated with Gold Nanoparticles

    Get PDF
    We developed a versatile and highly sensitive biosensor platform. The platform is based on electrochemical-enzymatic redox cycling induced by selective enzyme immobilization on nano-sized carbon interdigitated electrodes (IDEs) decorated with gold nanoparticles (AuNPs). Without resorting to sophisticated nanofabrication technologies, we used batch wafer-level carbon microelectromechanical systems (C-MEMS) processes to fabricate 3D carbon IDEs reproducibly, simply, and cost effectively. In addition, AuNPs were selectively electrodeposited on specific carbon nanoelectrodes; the high surface-to-volume ratio and fast electron transfer ability of AuNPs enhanced the electrochemical signal across these carbon IDEs. Gold nanoparticle characteristics such as size and morphology were reproducibly controlled by modulating the step-potential and time period in the electrodeposition processes. To detect cholesterol selectively using AuNP/carbon IDEs, cholesterol oxidase (ChOx) was selectively immobilized via the electrochemical reduction of the diazonium cation. The sensitivity of the AuNP/carbon IDE-based biosensor was ensured by efficient amplification of the redox mediators, ferricyanide and ferrocyanide, between selectively immobilized enzyme sites and both of the combs of AuNP/carbon IDEs. The presented AuNP/carbon IDE-based cholesterol biosensor exhibited a wide sensing range (0.005-10 mM) and high sensitivity (similar to 993.91 mu A mM(-1) cm(-2); limit of detection (LOD) similar to 1.28 mu M). In addition, the proposed cholesterol biosensor was found to be highly selective for the cholesterol detection

    A review of microfabricated electrochemical biosensors for DNA detection

    Get PDF
    This review article presents an overview of recent work on electrochemical biosensors developed using microfabrication processes, particularly sensors used to achieve sensitive and specific detection of DNA sequences. Such devices are important as they lend themselves to miniaturisation, reproducible mass-manufacture, and integration with other previously existing technologies and production methods. The review describes the current state of these biosensors, novel methods used to produce them or enhance their sensing properties, and pathways to deployment of a complete point-of-care biosensing system in a clinical setting

    Immobilization of Gold Nanoparticles on Nitrided Carbon Fiber Ultramicroelectrodes by Direct Reduction

    Get PDF
    Due to enhanced properties such as large surface area-to-volume ratio, metal nanoparticles are often employed as catalysts for various applications. However, most studies involving nanoparticle catalysts have been conducted on collections of particles rather than single nanoparticles. Results obtained for ensemble systems can be difficult to interpret due to variations in particle loading and interparticle distance, which are often challenging to control and characterize. In this study, two immobilization strategies for incorporating gold nanoparticles (AuNPs) on carbon fiber ultramicroelectrodes (UMEs) were compared with the goal of extending these techniques to nanoelectrodes for studies of single AuNPs. Both layer-by-layer deposition of AuNPs on natural carbon fiber UMEs and direct reduction of AuNPs on nitrided carbon fiber UMEs were explored. Although both methods proved feasible, the direct reduction method seemed to be more effective and should better enable direct comparisons of bare and capped AuNPs

    Nano biosensors for neurochemical monitoring

    Get PDF

    DEVELOPING NANOPORE ELECTROMECHANICAL SENSORS WITH TRANSVERSE ELECTRODES FOR THE STUDY OF NANOPARTICLES/BIOMOLECULES

    Get PDF
    This study concerns development of a technology of utilizing metallic nanowires for a sensing element in nanofluidic single molecular (nanoparticle) sensors formed in plastic substrates to detect the translocation of single molecules through the nanochannel. We aimed to develop nanofluidic single molecular sensors in plastic substrates due to their scalability towards high through and low cost manufacturing for point-of-care applications. Despite significant research efforts recently on the technologies and applications of nanowires, using individual nanowires as electric sensing element in nanofluidic bioanalytic devices has not been realized yet. This dissertation work tackles several technical challenges involved in this development, which include reduction of nanowire agglomerates in the deposition of individual nanowires on a substrate, large scale alignment/assembly of metallic nanowires, placement of single nanowires on microelectrodes, characterization of electrical conductance of single nanowire, bonding of a cover plate to a substrate with patterned microelectrodes and nanowire electrodes. Overcoming the abovementioned challenges, we finally demonstrated a nanofluidic sensor with an in-plane nanowire electrode in poly(methyl methacrylate) substrates for sensing single biomolecules. In the first part of this study, we developed the processes for separation and large-scale assembly of individual NiFeCo nanowires grown using an electrodeposition process inside a porous alumina template. A method to fabricate microelectrode patterns on plastic substrates using flexible stencil masks was developed. We studied electrical and magnetic properties of new composite core-shell nanowires by measuring the electrical transport through individual nanowires. The core-shell nanowires were composed of a mechanically stable FeNiCo core and an ultrathin shell of a highly conductive Au gold (FeNiCo-Au nanowires). In the second part of this study, we simulated the effects of the nanopore geometry on the current drop signal of the translocation through a nanopore via finite element method using COMSOL. Using the above techniques, we developed for the fabrication and alignment of the microelectrodes and nanowires, we studied the optimum conditions to integrate the transverse nanoelectrode with the nanochannel on plastic substrates. The main challenge was to find the conditions to embed the micro-/nanoelectrodes into the nanochannel substrate as well as the nanochannel cover sheet

    Isolated Graphene Edge Nanoelectrodes: Fabrication, Selective Functionalization, and Electrochemical Sensing

    Get PDF
    Diese Arbeit prĂ€sentiert eine einfache eine einfache, auf Photolithographie basierende Methode zur Darstellung einer isolierten Graphenkante (oder GrEdge) einer Monolage als Nanoelektrode auf einem isolierenden Substrat vorgestellt. Trotz ihrer Millimeter-LĂ€nge verhĂ€lt sich die nur einen Nanometer breite GrEdge-Elektrode wie ein Nanodraht mit einem hohen SeitenverhĂ€ltnis von 1000000 zu 1. Des Weiteren wird der Einsatz von elektrochemischer Modifikation (ECM) demonstriert, um die GrEdge selektiv mit Metall-Nanopartikeln und organischen Schichten nicht-kovalente oder kovalente zu funktionalisieren, wodurch die Chemie der Kante verĂ€ndert werden kann. Durch die Anbringung von Metall-Nanopartikeln kann zusĂ€tzlich oberflĂ€chenverstĂ€rkte Raman-Spektroskopie (SERS) genutzt werden, um die chemische Beschaffenheit sowohl der unberĂŒhrten als auch der funktionalisierten GrEdge zu charakterisieren. Die GrEdge weist sehr hohe Mass-entransportraten auf, was charakteristisch fĂŒr Nanoelektroden ist. Dementsprechend wird die voltammetrische Antwort von der Kinetik des heterogenen Elektrontransfers (HET) diktiert. An der GrEdge-Elektrode werden hohe HET-Raten beobachtet: mindestens 14 cm/s fĂŒr AußensphĂ€re sonde Ferrocenmethanol (FcMeOH) mit einem quasi-Nernst'schen Verhalten und 0,06 cm/s oder höher fĂŒr innere SphĂ€re sonde Ferricyanide ([Fe(CN)6]3-) mit einer kinetisch kontrollierten Reaktion. Nach der selektiven Modifikation der Kante mit Goldnanopartikeln erweist sich der HET als reversibel, mit einer massentransportbegrenztes Nernst‘sches Verhalten aufweisen fĂŒr beide RedoxmolekĂŒle. DarĂŒber hinaus ermöglicht die schnelle HET-Kinetik die Detektion der reduzierten Form von Nicotinamid-Adenin-Dinukleotid (NADH) und Flavin-Adenin-Dinukleotid (FAD) mit niedrigen Ansatzpotentialen und hinunter bis zu niedrigen mikromolaren Konzentrationen. Entsprechend verbessert die vorliegende Arbeit das VerstĂ€ndnis der Kante von Graphen und deren Chemie.This thesis presents a simple photolithography-based method to realize the isolated monolayer graphene edge (or GrEdge) nanoelectrode on an insulating substrate. The millimeter-long and a nanometer-wide GrEdge is found to behave like a nanowire with a high aspect ratio of 1000000-to-1. Further, the use of electrochemical modification (ECM) is demonstrated to selectively functionalize the GrEdge with metal nanoparticles and organic moieties in a non-covalent/ covalent manner to tune the chemistry of the edge. The attachment of metal nanoparticles was used to exploit surface-enhanced Raman scattering (SERS) to characterize the chemistry of both the pristine and the functionalized GrEdge. The GrEdge electrodes were found to exhibit very high mass transport rates, characteristic of nanoelectrodes. Accordingly, the voltammetric response is found to be dictated by the kinetics of heterogeneous electron transfer (HET), attributed to the nanoscale geometry and a unique diffusional profile at such electrodes. At the GrEdge electrode, high HET rates are observed: at least 14 cm/s for outer-sphere probe, ferrocenemethanol (FcMeOH) with a quasi-Nernstian behavior; and 0.06 cm/s or higher for inner-sphere probe, ferricyanide ([Fe(CN)6]3-) with a kinetically controlled response. Upon selective modification of the edge with gold nanoparticles, the HET is found to be reversible, with a mass-transport-limited Nernstian response for both probes. Furthermore, the fast HET kinetics enables the sensing of the reduced form of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) with low onset potentials and down to low micromolar concentrations. Hence, this thesis improves the understanding of the edges of graphene and their chemistry. It also realizes isolated GrEdge as a new class of nanoelectrode which forms an important basis within the fields of fundamental electrochemistry and analytical sciences
    • 

    corecore